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In this paper, numerical models are proposed for linear and nonlinear vibrations

analyses of viscoelastic sandwich beams with various viscoelastic frequency dependent

laws using the finite element based solution. Real and various complex eigenmodes

approaches are investigated as Galerkin bases. Based on harmonic balance method,

Analytical frequency–amplitude and phase–amplitude relationships are elaborated

based on the numerically computed complex eigenmodes. The equivalent loss factors

and frequencies as well as the forced harmonic response and phase curves are

performed for sandwich beams with various boundary conditions and frequency

dependent viscoelastic laws.
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1. Introduction

Viscoelastically damped structures find their application in many fields of engineering such as aerospace, aeronautics,
automotive, naval construction and civil engineering. They are used for efficient noise reduction and vibration control.
Classically viscoelastic damped structures are sandwich composites in which a soft viscoelastic layer is sandwiched
between two stiff elastic ones. For lightweight and flexible structures, the sandwich with a viscoelastic core is very
effective in controlling and reducing vibration responses [1,2]. For these structures, the damping results from a shearing in
the viscoelastic core due to the difference between in-plane displacement of the elastic faces and the low stiffness of the
core. This kind of structures finds much research interests during the last two decades. Many investigations have been
devoted to the linear dynamic analysis and a review on the evolution of modeling passive damping were given in [3]. From
an engineering point of view, the most relevant quantity is the equivalent frequency and loss factor associated with each
vibration mode. Thus, many analytical and numerical methods have been presented to predict these structural damping
properties in the linear framework. They differ from each other depending on the computational cost and their ability to
account for frequency dependence of the viscoelastic material. A review of applied methods can be found in [4].

It is well known that a large vibration amplitude may induce a dynamic behavior that differs significantly from the
behavior predicted by the linear theories. Multimodal approach, iterative-incremental procedures or the asymptotic
numerical method can be used for the nonlinear response and lead the solution in a large frequency range. These
procedures are developed for elastic and undamped beams, plates and shells with the geometrical nonlinearity effect
[5–9]. For viscoelastically damped structures, the nonlinear geometrical effect and the nonlinear frequency dependence of
the stiffness effect have to be both considered. This leads to a complex problem to deal with. Unfortunately, there is only a
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few works dealing with nonlinear vibrations of damped structures. Kovac et al. [10] and Hyer et al. [11] investigated
theoretical and experimental nonlinear forced responses of a clamped three layered sandwich beam. Iu et al. [12,13] analyzed
the nonlinear vibrations of multilayered sandwich beams based on incremental harmonic balance method and finite element.
The nonlinear free vibrations of damped sandwich plates and cylindrical panels have been investigated by Xia and
Lukaziewicz [14,15] using harmonic balance method and a multimode Galerkin’s procedure. Ganapathi et al. [16] highlighted
the variation of damping characteristics with aspect ratio of sandwich beams in conjunction with thickness ratio of skin-to-
core and material properties. In all these studies, only the constant complex modulus is used for the viscoelastic core. More
recently, Daya et al. [17,18] and Boutyour et al. [19] presented an elementary theory for nonlinear vibrations of damped
sandwich structures. The presented theory was applied analytically and numerically to viscoelastic sandwich beams, plates
and shells. Frequency–amplitude relationships depending on three coefficients are obtained by means of one mode Galerkin’s
procedure and the harmonic balance method. This permits to easily characterize the evolution of the equivalent loss factor and
the nonlinear frequency with the vibration amplitude. However, the model presented in [17,19] for nonlinear vibrations
analysis of damped sandwich structures was performed using real eigenmodes as Galerkin’s basis and assuming that the
variation of the nonlinear response has the same shape as the linear one. Real eigenmodes remain an approximation in the
analysis of nonlinear vibrations of viscoelastic structures and especially for highly damped structures. Furthermore, no survey
on the limit and validity range of the real eigenmodes approximation is available in the literature. There is still a need for
numerical assessment to raise a clear picture on the applicability and the accuracy of real eigenmodes approximation with
respect to the complex eigenmodes approximation for linear and nonlinear vibrations analysis of damped sandwich
structures. In this paper, a numerical method for linear and nonlinear vibrations analysis of viscoelastically damped sandwich
beams is developed with a finite element based solution. This method couples the harmonic balance technique to one mode
Galerkin’s procedure. A general formulation taking into account the frequency dependent viscoelastic behavior is presented.
Real modes, improved real modes, approached complex modes and exact complex modes are used for linear and nonlinear
vibrations characteristics of viscoelastic sandwich beams with various boundary conditions. The accuracy of the obtained
results is deeply discussed for constant and various frequency dependent viscoelastic core properties.

2. Mathematical formulation

In this paper, the viscoelastic sandwich beam model [17] with geometrical nonlinearities and zig–zag kinematic effects
is used to get the governing equations of the linear and nonlinear vibrations analysis. For the finite element numerical
solutions, the variational formulation is given. The convolution viscoelastic modeling is used in order to take into account
the viscoelastic effect in a general way.

2.1. Viscoelastic sandwich structure

Let us consider a symmetric sandwich beam with a rectangular cross-section consisting of a viscoelastic layer
sandwiched between two elastic layers as presented in Fig. 1. The coordinates x along the length, y along the width and z

along the thickness directions are considered. One denotes by zi the ith middle plane coordinate with respect to z=0 where
the subscripts i=1,3 refer to the external faces while subscript i=2 refers to the core layer. The thickness of the face layers is
hf and of the viscoelastic core is hc. The beam length in the x direction is L while the width in the y direction is b. The
damping of the structure is assumed to be induced thanks to the shearing in the viscoelastic core layer. The following
assumptions are used:
�
 plane transverse sections to the middle plane remain plane after bending,

�
 the three layers undergo the same transverse deflection,

�
 no slipping occurs at the interfaces between the three layers,

�
 the constitutive materials of the beam are linear homogeneous and isotropic.
Fig. 1. Sandwich beam’s configuration.
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The kinematic properties are described based on the classical Euler–Bernoulli’s beam theory for the elastic face layers and
on the Timoshenko’s beam theory for the viscoelastic layer. The face layers have the same thickness, mass density and
Young’s/shear modulus. The core material is linearly viscoelastic with a complex frequency dependent Young’s/shear
modulus, but the Poisson ratio is assumed to be real constant. Geometrical nonlinearity effects are introduced using the
Von Karman’s theory which assumes moderate rotations. Based on these assumptions, the strain and displacement fields
and the constitutive laws governing the viscoelastic sandwich beam motion can be derived as reported in the Appendix A.

2.2. Variational formulation

The virtual work principle is applied to establish the equation of motion of the sandwich beam subjected to a transverse
harmonic excitation force F(x,t). The longitudinal and rotatory inertia effects are disregarded and only the transverse
inertia effect is considered. The interfaces displacement continuity, expressed in the Appendix A leads to the generalized
displacement vector fu,w,bg related to the core layer. Thus for the viscoelastic sandwich beam, the three components of the
virtual work principle are [17]

dPint ¼�

Z L

0
fNðduuþwudwuÞþMbdbuþMwdw00 þTðdwuþdbÞgdx

dPext ¼

Z L

0
Fdw dx

dPacc ¼ ð2rf Sf þrcScÞ

Z L

0

€wdw dx (1)

where dPint represents the virtual work of the internal forces which is obtained by assembling the virtual work equations of
the three layers, dPext the virtual work of the external loads and dPacc the virtual work of the kinetic energy. du, dw and db
are components of the virtual displacement vector. rf and rc are mass density of the faces and of the core, respectively. The
notations ðgu,g00Þ and ð _g , €gÞ stand for the spatial derivatives ðqg=qx,q2g=qx2Þ and temporal derivatives ðqg=qt,q2g=qt2Þ,
respectively. Referring to Eq. (1), the internal forces involved in the virtual work equations are [17]

N¼N1þN2þN3

T ¼
Sc

2ð1þncÞ
Y � ð _wuþ _bÞ

Mb ¼M2þðN1�N3Þ
hc

2

Mw ¼M1þM3þðN3�N1Þ
hf

2
(2)

in which N is the axial force, T the shear force, Mb and Mw are the bending moments in the whole beam while Ni and Mi are
the axial force and bending moment of each layer i as listed in the Appendix A. The governing equations of motion of the
viscoelastic sandwich beam is given by

�dPint ¼ dPext�dPacc

Z L

0
fNduuþNwudwuþMbdbuþMwdw00 þTðdwuþdbÞgdx¼

Z L

0
Fdw dx�ð2rf Sf þrcScÞ

Z L

0

€wdw dx (3)

Note that Eq. (3) shows a coupling between flexural and membrane effects. As the axial inertia terms and the axial
excitation force are disregarded, the axial equilibrium solution can be obtained byZ L

0
Nduudx¼ 0 (4)

The flexural response of the viscoelastic sandwich beam can be then investigated by solving the following equation:Z L

0
fNwudwuþMbdbuþMwdw00 þTðdwuþdbÞgdx¼

Z L

0
Fdw dx�ð2rf Sf þrcScÞ

Z L

0

€wdw dx (5)

The finite element method will be used for the numerical discretization of this equation. Note that this equation is a
nonlinear integro-partial differential equation. As there is no analytical solution of this equation, only approximated
solutions will be investigated. The Galerkin’s approach will be used based on real, improved real, approached complex and
exact complex eigenmodes. The real, improved real and approached complex eigenmodes are obtained by solving
eigenvalue problems and the exact complex eigenmodes will be obtained by an asymptotic numerical method.
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3. Linear vibrations analysis

In the present section, the linear free vibrations of the viscoelastic sandwich beams are investigated based on the finite
element method. The material properties of the viscoelastic core are frequency dependent in order to take into account
various viscoelastic laws.

3.1. Finite element matrix formulation

To get the vibration eigenmodes, frequencies and equivalent loss factors, one must solve the flexural problem Eq. (5) in
the linear framework: Z L

0
fMbdbuþMwdw00 þTðdwuþdbÞgdx¼�ð2rf Sf þrcScÞ

Z L

0

€wdw dx (6)

For free vibrations analysis, the solution is sought in the following harmonic form:

wðx, tÞ

bðx, tÞ

( )
¼

WðxÞ

BðxÞ

( )
eiot (7)

The finite element method is applied to discretize the flexural problem (6). One dimensional two nodes finite element is
used in this paper. Each node has three degrees of freedom (DOF) which describe the transverse displacement (W), the
slope ðqW=qxÞ and the rotation (B). Thus, for each element bounded by the nodes 1 and 2, the nodal displacement vector is

fUeg ¼ T ½W1 W u1 B1 W2 W u2 B2� (8)

Using classical polynomial shape functions [20], the element displacement field vector is written as

W

B

� �
¼

Nw

Nb

" #
fUeg (9a)

½Nw� ¼ ½n1ðxÞ n2ðxÞ 0 n3ðxÞ n4ðxÞ 0� (9b)

½Nb� ¼ ½0 0 n5ðxÞ 0 0 n6ðxÞ� (9c)

where [Nw] and ½Nb� are the shape function matrices listed in the Appendix B. Inserting Eqs. (9) into Eq. (6), one gets the
following elementary eigenvalue problem:

ð½KeðoÞ��o2½Me�ÞfUeg ¼ 0 (10)

where [Me] and [Ke] are element mass and stiffness matrices, respectively, for which more detail is given in the Appendix B.
These matrices are assembled to get the overall complex nonlinear eigenvalue problem:

ð½KðoÞ��o2½M�ÞfUg ¼ 0 (11)

where [M] and [K] are the assembled mass and stiffness matrices, respectively, and {U} the total displacement vector.
This matrix formulation is well known in the free vibrations analysis of viscoelastic structures [4,21–25]. Let us note

that the problem (11) cannot be solved by the classical eigenvalue procedures when [K] depends nonlinearly on o. Many
attempts have been proposed in the literature. The modal strain energy method [24] is applicable for frequency dependent
structures but in some practical cases the error can be relatively large [26]. The direct frequency response method was
applied in [25], but the high computational cost being its main drawback. The asymptotic approach [21] and the complex
eigenvalue method [27] are limited to the case of constant stiffness viscoelastic structures. Other numerical methods for
nonlinear eigenvalue problems [4,22,23,28] accounting the frequency dependence have been proved efficient to solve the
problem (11) i.e: the asymptotic numerical algorithms [4,22], the order-reduction iterative algorithm [23] and the Arnoldi
iterative projection method [28], but are not available in the existing commercial codes. More recently, a toolbox has been
designed with the help of automatic differentiation techniques to make the asymptotic numerical method generic and easy
of use [29–31]. The solution can be performed easily and in an exact way whatever the dependence on frequency of the
matrix [K]. The exact complex eigenmodes are investigated based on this procedure.

3.2. Eigenmodes

The aim of this paper is the modeling and numerical investigation of the linear and nonlinear vibrations characteristics
and behaviors of viscoelastic sandwich beams with various viscoelastic frequency dependent laws. As the Galerkin’s
approach will be used, an efficient basis is needed for accurate results and particularly for the nonconstant laws.
� Real eigenmodes: RM. For real eigenmodes, which are classically used in the modal strain energy method and

conventionally by most authors, the real eigenvalue problem that corresponds to the delayed elasticity is solved using
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eigenvalue problem algorithms such as subspace iteration or Lanczos method:

ð½Kð0Þ��o2
0½M�ÞfU0g ¼ 0 (12)

The nth natural frequency o0n
and the associated eigenmode fU0n

g numerically obtained are real quantities.
� Improved real eigenmodes: IRM. The real eigenmodes obtained by solving (12) are conventionally used and lead to

accurate results for constant viscoelastic laws. Unfortunately, for frequency dependent laws these modes may lead to
erroneous prediction of the equivalent frequencies and loss factors in the modal strain energy framework. To overcome
this drawback, the following improved real eigenmodes procedure is introduced. Eq. (12) has to be solved to get o0. The
improved real eigenmodes are then solutions of the following eigenproblem:

ðRe½Kðo0Þ��oimp2

0 ½M�ÞfUimp
0 g ¼ 0 (13)

in which Re½Kðo0Þ� is the real part of ½Kðo0Þ�, oimp
0n

and Uimp
0n

are the nth improved eigenfrequencies and real eigenmodes.
Note that Eqs. (12) and (13) are only identical for constant complex viscoelastic laws.
� Approached complex eigenmodes: ACM. The eigenvalue problem (11) must be solved in a way taking into account the

frequency dependence introduced by the viscoelastic law. Thus, the stiffness matrix ½KðoÞ� is approximated around the real
frequency o0 that yields the following complex eigenvalue problem:

ð½Kðo0Þ��o2½M�ÞfUg ¼ 0 (14)

Solving this complex eigenvalue problem leads to the nth frequencies on and eigenmodes fUng ¼ fUðo0n
Þg which are

complex quantities.
� Exact complex eigenmodes: ECM. The asymptotic numerical method (ANM) is used to solve the nonlinear problem (11)

without any approximation. Setting l¼o2, the solution ðU,lÞ can be represented by power series with respect to a path
parameter p [4,30,31]:

U ¼U0þpU1þp2U2þp3U3þ � � � þpjUjþ � � � ,

l¼ l0þpl1þp2l2þp3l3þ � � � þpjljþ � � � (15)

in which Uj and lj are new unknowns which have to be computed. Introducing Eq. (15) into Eq. (11) and equating like
powers of p leads to a set of linear problems. The so called diamant approach [29] couples the ANM and the automatic
differentiation (AD) techniques automating the computations of higher order derivatives. To that end, an AD toolbox has
been designed [30] and the nonlinear problem (11) can therefore be solved in an efficient and generic form using the ANM
solver presented in [31]. Applied to the present problem, it consists of splitting the residual equation (11) in two sub-
residues:

RðU,lÞ ¼ ð½Kð0Þ�þEðlÞ½Kv��l½M�ÞfUg ¼ SðU,lÞþTðU,lÞ ¼ 0

SðU,lÞ ¼ ð½Kð0Þ��l½M�ÞfUg

TðU,lÞ ¼ EðlÞ½Kv�fUg (16)

where EvðlÞ ¼ EðlÞþEvð0Þ is a complex nonlinear function describing the dependence on frequency of the Young’s/shear
modulus of the viscoelastic material and [Kv] is a purely real matrix. The homotopy technique [31–33] is used to deform
the original problem by introducing the path parameter p in order to drive the solution from the real eigenvalue problem
SðU,lÞ ¼ 0 whose solution ðU0,l0Þ is known to the complex one

RðU,l,pÞ ¼ SðU,lÞþpTðU,lÞ ¼ 0, p 2 ½0 1� (17)

Inserting the Taylor series Sj and Tj of functions S and T into Eq. (17) allows to deduce the generic linear systems to be
implemented with diamant. Applying the derivative propagation chain rules with suitable initialization leads to compute
the unknowns ðUj,ljÞ in the generic form [31]:

A0 U0
T U0 0

" #
Uj

k

� �
¼
�fSjjUj ¼ 0g�pfTjjUj ¼ 0g�fTj�1g

0

� �

lj ¼�

T U0 ½fSjjUj ¼ 0,lj ¼ 0gþpfTjjUj ¼ 0,lj ¼ 0gþTj�1�

T U0½fS1jU1 ¼ 0,l1 ¼ 1gþpfT1jU1 ¼ 0,l1 ¼ 1g�
(18)

where the matrix A0 ¼ ½Kð0Þ��l0½M�þpEðl0Þ½Kv�, while k denotes the Lagrange multiplier. The solution ðU,lÞ is then
determined using the continuation procedure. Theoretical formulas and numerical aspects on the computation of the
unknowns ðUj,ljÞ and the continuation procedure are detailed in Ref. [31] for convenience. Thus, to generate the solution of
the problem (11), the user of the ANM solver has only to define the viscoelastic function E and the sub-residues S, T by
providing the finite element matrices ½Kð0Þ�,½Kv�, [M] and the starting guess ðU0,l0Þ. The troncature order and the precision
are also user-defined. The vector {U} is the exact complex eigenmode while the eigenvalue l is the square of the exact
complex frequency o.
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The associated linear equivalent nth frequency Oln and loss factor Zln
can be obtained by the following formulationship:

o2
n ¼O2

ln
ð1þ iZln

Þ ¼

T
fUng½Kðo0n

Þ�fUng

T
fUng½M�fUng

(19)

Note that when the real mode is used, Eq. (19) is exactly the modal strain energy. Based on the other modes, the classical
modal strain energy is improved and particularly for frequency dependent viscoelastic laws. These modes will be also used
as a Galerkin’s basis for the nonlinear vibrations analysis of the considered viscoelastic sandwich beam. As the one mode
Galerkin’s approach will be considered in this analysis, the previous real, improved real, approached complex and exact
complex eigenmodes will be used. The validity of each eigenmode approach will be assessed in the linear and nonlinear
analysis for various viscoelastic laws.

4. Nonlinear amplitude equation

In this paper, the analysis is limited to periodic responses to a transverse harmonic excitation Fðx,tÞ ¼ f ðxÞeiot or to free
vibrations. The beam response is assumed to be harmonic in time and almost parallel to a single linear vibration mode in
space with an arbitrary complex amplitude. Based on the one mode Galerkin’s approximation, the deflection and rotation
functions are sought in the following form:

wðx, tÞ

bðx, tÞ

( )
¼ A

WðxÞ

BðxÞ

( )
eiotþCC (20)

where A is the complex unknown amplitude, and CC denotes the conjugate complex. The vector {W,B} is the Galerkin’s
basis to be chosen which approximates the spatial variation of the vibration mode. {W,B} is numerically computed using
the previous eigenmodes approaches.

The explicit form of Eq. (5) is completely known if one carries out the axial affects induced by the axial force. Referring
to Eq. (2), one can realize that the axial force N(x,t) is function of the displacement field variables {u,w}. Using Eq. (20), the
axial force N(x,t) and the axial displacement u(x,t) can be sought as functions of harmonics 0 and 2o [17]:

uðx,tÞ ¼ jAj2u0ðxÞþfA
2u2oðxÞe

i2otþCCg

Nðx,tÞ ¼ jAj2N0ðxÞþfA
2N2oðxÞe

i2otþCCg (21)

where u0 and N0 are the amplitudes of u and N, respectively, at the harmonic 0, as well as u2o and N2o at the harmonic 2o.
The notation j�j stands for the complex modulus. Inserting Eq. (21) into Eq. (2), and using Eqs. (44) and (45), one gets the
amplitudes of the axial force:

N0ðxÞ ¼ ð2Ef Sf þScEcð0ÞÞðuu0ðxÞþjW uðxÞj2Þ

N2oðxÞ ¼ ð2Ef Sf þScEcð2oÞÞðuu2oðxÞþ1
2ðW uðxÞÞ2Þ (22)

Indeed, by taking account of Eq. (22) in Eq. (4), u0 and u2o are solutions of the linear problems:Z L

0
uu0ðxÞduudx¼�

Z L

0
jW uðxÞj2duudx

Z L

0
uu2oðxÞduudx¼�

Z L

0

1

2
ðW uðxÞÞ2duudx (23)

Applying the harmonic balance method and using the previous equations, one gets an equation for the complex amplitude [17]:

�o2mAþkAþknlAA2 ¼Q (24)

where m, k, knl and Q are the modal mass, the linear modal stiffness, the nonlinear modal stiffness and the modal force,
respectively. The notation � stands for the conjugate complex:

m¼

Z L

0
ð2rf Sf þrcScÞjWj

2 dx

k¼

Z L

0

1

2
fð2IcEcðoÞþEf Sf h2

c ÞjBuj
2�Ef Sf hf hcðW

00BuþW 00BuÞgdxþ

Z L

0

1

2
fEf ð4If þSf h2

f ÞjW
00j2þ2ScGcðoÞjW uþBj2gdx

knl ¼

Z L

0
ðN0jW uj2þN2oW u

2
Þdx

Q ¼

Z L

0
f W dx (25)
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All these coefficients can be computed using the finite element model proposed in Section 3.1. The analysis is conducted here
for axially immovable sandwich beam ends and the corresponding reduced equations are given in the Appendix C.
The amplitude equation is strongly nonlinear because the stiffnesses k and knl are frequency dependent through the Young’s/
shear modulus of the viscoelastic core:

kðoÞ ¼ kRðoÞþ ikIðoÞ

knlðoÞ ¼ kR
nlðoÞþ ikI

nlðoÞ (26)

The solution can be sought in a restrictive way around the real frequency o0 or in a general case around any frequency o.

4.1. Simplified approach

Assuming that the frequency o is near the real frequency o0, the stiffnesses k and knl can be approximated around the
real frequency, i.e: k� kðo0Þ and knl � knlðo0Þ. Thus, for nonlinear free vibrations (Q=0), the nonlinear complex frequency is
function of the amplitude a¼ jAj:

o2 ¼O2
nlð1þ iZnlÞ (27)

in which the nonlinear equivalent frequency Onl and the nonlinear equivalent loss factor Znl are deduced from the complex
frequency [17]:

O2
nl ¼O2

l 1þ
a

h

� �2

CRðo0Þ

� �

Znl ¼ Zl

1þ
a

h

� �2

CIðo0Þ

1þ
a

h

� �2

CRðo0Þ

8>>>>>>><
>>>>>>>:

(28)

where CRðo0Þ ¼ h2ðkR
nlðo0Þ=kRðo0ÞÞ and CIðo0Þ ¼ h2ðkI

nlðo0Þ=kIðo0ÞÞ are non-dimensional modal coefficients introduced for
the analysis. Both coefficients account for the nonlinear effects and characterize the amplitude dependence of the
frequency and the loss factor. Writing the amplitude equation coefficients in the complex form A¼ aeiy, k¼ jkjeij,
knl ¼ jknlje

ic, Q ¼ jQ jeia leads to define the amplitude–frequency relationship aðoÞ and the amplitude phase–frequency
relationship yðoÞ:

jknlðo0Þj
2a6þ2ðkRðo0Þk

R
nlðo0ÞþkIðo0Þk

I
nlðo0Þ�o2mkR

nlðo0ÞÞa
4þðjkðo0Þj

2�2o2mkR
ðo0Þþo4m2Þa2 ¼ jQ j2 (29)

tanðy�aÞ ¼
�kIðo0Þ�a2kI

nlðo0Þ

�o2mþkRðo0Þþa2kR
nlðo0Þ

(30)

where �a represents the eigenmode’s phase which is zero for real eigenmodes.

4.2. General approach

In the general case, the stiffnesses k and knl are not constant as assumed in the previous section and the amplitude
equation must be solved in an exact way. Note that for the nth exact complex eigenmode {Un}, the complex eigensolution
on of the nonlinear complex eigenvalue problem (11) satisfies

o2
n ¼O2

ln
ð1þ iZln

Þ ¼

T
fUng½KðonÞ�fUng

T
fUng½M�fUng

(31)

which differs from the relationship (19) assuming that the damping properties are estimated around the real frequency
o0n

. Thus the solution of the amplitude equation can be sought in a general framework in the vicinity of any frequency o.
Using the decomposition (26) in Eq. (24), the generalized amplitude equation is obtained

f3ðoÞr3þ f2ðoÞr2þ f1ðoÞrþ f0 ¼ 0 (32)

where r=a2, f0 ¼�jQ j
2 and the functions fiðoÞ are given by

f3ðoÞ ¼ kR
nl

2
ðoÞþkI

nl

2
ðoÞ

f2ðoÞ ¼ 2ðkR
nlðoÞð�o

2mþkRðoÞÞþkIðoÞkI
nlðoÞÞ

f1ðoÞ ¼ ð�o2mþkRðoÞÞ2þkI2
ðoÞ (33)

For each fixed frequency o, the solution can be performed using Sotta method for instance. As the conditions ð3f3f1�f 2
2 a0Þ

and ð3f0f2�f 2
1 a0Þ are always satisfied for the considered frequencies o, the three solutions of the cubic equation (32) are



M. Bilasse et al. / Journal of Sound and Vibration 329 (2010) 4950–4969 4957
given by

r1ðoÞ ¼
d1d

1=3
�g1g1=3

d2d
1=3
�g2g1=3

r2oÞ ¼
d1jd1=3

�g1g1=3

d2jd1=3
�g2g1=3

r3ðoÞ ¼
d1j2d1=3

�g1g1=3

d2j2d1=3
�g2g1=3

(34)

where

j¼ e2ip=3

d¼ g3
2f2þ3g1g2

2f3

g¼ d3
2f2þ3d1d

2
2f3 (35)

For the solution procedure, the coefficients d1,d2,g1,g2 are chosen in the way that the ratios d1=d2, g1=g2 be the roots of the
associated Sotta resolvent equation:

ð3f3f1�f 2
2 ÞX

2þð9f3f0�f2f1ÞXþ3f2f0�f 2
1 ¼ 0 (36)

Herein, numerical results are computed setting d2 ¼ g2 ¼ 1. Thus for each amplitude aðoÞ, the associated phase is

tanðy�aÞ ¼
�kIðoÞ�a2kI

nlðoÞ
�o2mþkRðoÞþa2kR

nlðoÞ
(37)

Note that the peculiar case discussed in the previous section is recovered when setting o¼o0 in the stiffnesses k and knl.

5. Numerical results

For sake of clearness and effectiveness, the emphasis is on the linear and nonlinear vibrations of viscoelastic sandwich
beams with various viscoelastic models. Numerical solutions are performed with a refined mesh size to ensure the
convergence of the finite element method. Vibration characteristics and harmonic response and phase curves are provided
for comparison that allow to assess the validity of each eigenmode approach.

5.1. Constant viscoelastic model

For the constant viscoelastic model, the viscoelastic properties of the core are introduced by a complex Young’s
modulus that is assumed to be constant:

Ec ¼ E0ð1þ iZcÞ (38)

where E0 is the Young’s modulus of the delayed elasticity and Zc the core’s loss factor. This is the simplest and the classical
way to take account the viscoelastic behavior. In such a case, the eigenvalue problem (11) becomes linear and can be
solved directly. The proposed finite element is tested on the sandwich beam studied quite extensively in the literature
[4,25,31,34]. Material and geometrical properties are given in Table 1. The equivalent frequencies and associated loss
factors of the clamped–free sandwich beam corresponding to the first six modes are presented in Table 2 for different
core’s loss factors. These results are compared to the forced harmonic response results performed in [34] using the
asymptotic numerical method (ANM) and the bandwidth approach and to those of [31] using the diamant approach. Note
that both of the later references use complex eigenmodes. The same type of results performed with different eigenmodes
approaches and the exact analytical formula of Rao [35] are given in Table 3 for the simply supported sandwich beam. In
both tables, it is seen that for constant viscoelastic models, results obtained by the ACM approach and the ECM approach
implemented with diamant are exactly the same. These results are quite the same of those provided by Rao’s analytical
formula [35] (Table 3) and closer to those of [34] using finite element method apart from slight differences observed for the
equivalent frequencies (Table 2). This provides validation of the present finite element model. Tables 2 and 3 present that
unlike for the ACM and the ECM approaches, the equivalent frequencies and associated loss factors remain constant for the
RM approach whatever the core’s loss factor. For small values of the core’s loss factor such as 0.1 and 0.6, the equivalent
frequencies and associated loss factors obtained by the ACM/ECM approach are closer to those obtained by the RM
approach, but much differences are observed when the core’s loss factor increases up to 1 and 1.5. In fact, the RM approach
overestimates the equivalent loss factors and underestimates the equivalent frequencies. Thus for constant viscoelastic
models, the ACM/ECM and RM approaches are equivalent only for small values of the core’s loss factor.



Table 1
Material and geometrical properties of the sandwich beam.

Elastic faces Young’s modulus Ef=6.9�1010 N m�2

Poisson ratio nf ¼ 0:3

Density rf ¼ 2766 Kg m�3

Thickness hf=1.524 mm

Viscoelastic core Young’s modulus E0=1.794�106 N m�2

Poisson ratio nc ¼ 0:3

Density rc ¼ 968:1 Kg m�3

Thickness hc=0.127 mm

Beam Length L=177.8 mm

Width b=12.7 mm

Table 2
Linear equivalent frequencies and associated loss factors of the clamped–free sandwich beam for various core’s loss factors.

Zc RM ACM Bilasse et al. [31] Abdoun et al. [34]

Ol (Hz) Zl=Zc Ol (Hz) Zl=Zc Ol (Hz) Zl=Zc Ol (Hz) Zl=Zc

0.1 64.1 0.283 64.1 0.281 64.1 0.281 64.5 0.281

296.6 0.243 296.6 0.242 296.7 0.242 298.9 0.242

744.3 0.154 744.4 0.154 744.5 0.154 746.5 0.154

1395.2 0.089 1395.6 0.088 1395.7 0.089 1407.7 0.089

2263.4 0.057 2264.5 0.057 2264.5 0.057 2286.2 0.057

3347.3 0.039 3349.7 0.039 3349.8 0.039 3385.7 0.039

0.6 64.1 0.283 65.5 0.246 65.5 0.246 65.9 0.247

296.6 0.243 299.1 0.232 299.2 0.232 303.1 0.224

744.3 0.154 746.2 0.152 746.3 0.153 752.3 0.150

1395.2 0.089 1396.6 0.088 1396.6 0.089 1412.7 0.088

2263.4 0.057 2265.1 0.057 2265.2 0.057 2290.6 0.057

3347.3 0.039 3350.1 0.038 3350.2 0.039 3389.5 0.039

1 64.1 0.283 67.4 0.202 67.5 0.202 67.8 0.204

296.6 0.243 303 0.217 303.1 0.218 309.1 0.201

744.3 0.154 749.4 0.150 749.4 0.150 761.1 0.142

1395.2 0.089 1397.9 0.088 1398.3 0.088 1420.6 0.086

2263.4 0.057 2266.3 0.057 2266.3 0.057 2297.9 0.057

3347.3 0.039 3350.9 0.038 3350.9 0.039 3395.9 0.037

1.5 64.1 0.283 69.9 0.153 69.9 0.153 70.3 0.155

296.6 0.243 309.1 0.197 309.1 0.198 317.4 0.176

744.3 0.154 755.2 0.145 755.2 0.146 777.2 0.131

1395.2 0.089 1401.4 0.087 1401.4 0.087 1432.8 0.083

2263.4 0.057 2268.4 0.056 2268.5 0.057 2310.1 0.056

3347.3 0.039 3352.3 0.038 3352.3 0.039 3307.0 0.039
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Fig. 2 displays the eigenmode deflection obtained by the ECM approach for the normalized sandwich beam under
clamped–simple and clamped–free boundary conditions. The real and imaginary part have the same mode shape but differ
in the amplitude depending on the damping. The imaginary part of the eigenmode which is commonly disregarded in the
RM approach may become larger in the presence of high damping. In this case, the imaginary part cannot be neglected and
complex eigenmodes are needed to take account accurately the whole damping induced in the structure.

The linear responses of the simply supported and the clamped–free sandwich beam corresponding to the first real and
complex vibration mode are presented in Fig. 3 for different core’s loss factors. Far from the resonance, the response
obtained by the real mode and the one obtained by the complex mode are closer. But in the vicinity of the resonance, there
is a shift between the real mode response and the complex mode response. In the resonance zone, the real mode
underestimates the amplitude of the resonance peaks compared to the complex mode. The corresponding linear phases are
displayed in Fig. 4 and the same observations are clearly shown. The shift between the real mode phase and the complex
mode phase becomes larger when the damping increases, which proves that the RM approach is not suitable especially in
the presence of high damping.

For the nonlinear vibrations analysis, the nonlinear modal coefficients CR and CI computed following the simplified
approach (Section 4.1) are given in Table 4 for the sandwich beam under various boundary conditions. Recall that for the
constant complex viscoelastic model, the RM approach is quite similar to the IRM approach and the ACM approach is quite



Table 3
Linear equivalent frequencies and associated loss factors of the simply supported sandwich beam for various core’s loss factors.

Zc RM ACM ECM Rao’s formula [35]

Ol (Hz) Zl=Zc Ol (Hz) Zl=Zc Ol (Hz) Zl=Zc Ol (Hz) Zl=Zc

0.1 148.45 0.3507 148.51 0.3501 148.51 0.3502 148.51 0.3502

488.45 0.1958 488.48 0.1958 488.48 0.1958 488.47 0.1958

1034.73 0.1071 1034.75 0.1071 1034.75 0.1071 1034.69 0.1071

1795.31 0.0652 1795.32 0.0652 1795.32 0.0652 1795.13 0.0653

2771.97 0.0434 2771.98 0.0434 2771.98 0.0434 2771.49 0.0434

3965.31 0.0308 3965.32 0.0308 3965.32 0.0308 3964.28 0.0308

0.6 148.45 0.3507 150.71 0.3328 150.71 0.3328 150.71 0.3329

488.45 0.1958 489.76 0.1943 489.76 0.1943 489.75 0.1944

1034.73 0.1071 1035.44 0.1069 1035.44 0.1069 1035.38 0.1069

1795.31 0.0652 1795.74 0.0652 1795.74 0.0652 1795.54 0.0652

2771.97 0.0434 2772.26 0.0434 2772.26 0.0434 2771.76 0.0434

3965.31 0.0308 3965.51 0.0308 3965.51 0.0308 3964.47 0.0308

1 148.45 0.3507 154.43 0.3052 154.42 0.3052 154.42 0.3052

488.45 0.1958 492.07 0.1918 492.07 0.1918 492.06 0.1918

1034.73 0.1071 1036.69 0.1065 1036.69 0.1065 1036.63 0.1065

1795.31 0.0652 1796.50 0.0651 1796.50 0.0651 1796.30 0.0651

2771.97 0.0434 2772.76 0.0433 2772.76 0.0433 2772.27 0.0434

3965.31 0.0308 3965.87 0.0308 3965.87 0.0308 3964.83 0.0308

1.5 148.45 0.3507 160.73 0.2627 160.72 0.2626 160.72 0.2626

488.45 0.1958 496.50 0.1871 496.50 0.1870 496.49 0.1871

1034.73 0.1071 1039.13 0.1059 1039.13 0.1059 1039.07 0.1059

1795.31 0.0652 1797.98 0.0650 1797.98 0.0650 1797.78 0.0650

2771.97 0.0434 2773.74 0.0433 2773.74 0.0433 2773.25 0.0433

3965.31 0.0308 3966.56 0.0307 3966.56 0.0307 3965.52 0.0308
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Fig. 2. Real and imaginary parts of the eigenmode deflection of the sandwich beam for Zc ¼ 1:5 (a)C–S beam normalized at x0=L/2 for the first mode and

at x0=L/4 for the second mode, (b) C–F beam normalized at x0=L.
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similar to the ECM approach. Unlike the ACM/ECM approach, the nonlinear modal coefficients remain constant for the RM/
IRM approach whatever the core’s loss factor.
5.2. Frequency dependent viscoelastic models

The vibration analysis of the viscoelastic sandwich beam of Table 1 is investigated for frequency dependent viscoelastic
materials. The 3M ISD112 and the Polyvinyl-Butyral (PVB) viscoelastic materials are selected for the core. Based on the
generalized Maxwell model, the frequency dependent shear modulus of the 3M ISD112, obtained by master curve fitting at
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the temperature 27 and 20 1C is given by [1,36]

GcðoÞ ¼ G0 1þ
X3

j ¼ 1

Djo
o�iOj

0
@

1
A (39)

where G0 is the shear modulus of the delayed elasticity and ðDj,OjÞ are curve fitted-parameters given in Table 5. The mass
density of the 3M ISD112 material [1] is rc ¼ 1600 Kg m�3 and its Poisson ratio is nc ¼ 0:5. For the PVB viscoelastic material,
its shear modulus may be represented at 20 1C by a power law [2]:

GcðoÞ ¼ G1þðG0�G1Þ½1þðiotÞ1�a��b (40)

where G0=0.479�106 Pa is the delayed elasticity of the shear modulus, G1 ¼ 2:35� 108 Pa, t¼ 0:3979, a¼ 0:46 and
b¼ 0:1946. The mass density of the PVB [2] is rc ¼ 999 Kg m�3 and its Poisson ratio is nc ¼ 0:4. For frequency dependent
viscoelastic models, the analysis is conducted first around the real frequency o0 and second around any frequency o.

5.2.1. Analysis around the real frequency o0

Numerical solutions are performed assuming that the frequency o is near the real frequency o0 as described in Sections
3.2 and 4.1. For each core material cited above, the linear equivalent frequencies and associated loss factors obtained by



Table 4
Nonlinear coefficients associated to the first two vibration modes of the sandwich beam for different core’s loss factors.

Zc RM/IRM ACM/ECM

CR CI CR CI

Simply supported

0.1 20.83 2.14�10�5 20.81 2.15�10�5

30.80 5.68�10�5 30.79 5.68�10�5

0.6 20.83 2.14�10�5 20.21 2.19�10�5

30.80 5.68�10�5 30.63 5.69�10�5

1 20.83 2.14�10�5 19.25 2.28�10�5

30.80 5.68�10�5 30.34 5.71�10�5

1.5 20.83 2.14�10�5 17.77 2.44�10�5

30.80 5.68�10�5 29.80 5.75�10�5

Clamped–clamped

0.1 7.34 1.40�10�5 7.34 1.40�10�5

18.54 6.15�10�5 18.54 6.15�10�5

0.6 7.34 1.40�10�5 7.30 1.40�10�5

10.34 6.15�10�5 18.49 6.16�10�5

1 7.34 1.40�10�5 7.22 1.41�10�5

18.54 6.15�10�5 18.42 6.18�10�5

1.5 7.34 1.40�10�5 7.08 1.42�10�5

18.54 6.15�10�5 18.28 6.22�10�5

Clamped–simple

0.1 13.89 1.92�10�5 13.89 1.92�10�5

27.18 6.72�10�5 27.18 6.72�10�5

0.6 13.89 1.92�10�5 13.67 1.93�10�5

27.18 6.72�10�5 27.11 6.73�10�5

1 13.89 1.92�10�5 13.30 1.95�10�5

27.18 6.72�10�5 26.98 6.75�10�5

1.5 13.89 1.92�10�5 12.68 1.99�10�5

27.18 6.72�10�5 26.74 6.80�10�5

Table 5
Maxwell series terms (39) at 27 1C and 20 1C of 3M ISD112 [1,36].

j 27 1C 20 1C

G0 (Pa) Dj Oj (rad s�1) G0 (Pa) Dj Oj (rad s�1)

1 0.5�106 0.746 468.7 0.0511�106 2.8164 31.1176

2 3.265 4742.4 13.1162 446.4542

3 43.284 71532.5 45.4655 5502.5318
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different eigenmodes approaches are given in Table 6 for the clamped–free sandwich beam and in Table 7 for the clamped–
clamped sandwich beam. Results of both tables show that the linear equivalent frequencies and associated loss factors
obtained by the ACM approach are very closer to those of the ECM approach whatever the viscoelastic law. The equivalence
between both approaches already seen for constant viscoelastic models is one more shown here for frequency dependent
models. Results obtained by the RM approach are completely different from those of the ACM and ECM approaches. As
already seen for the constant viscoelastic models, the RM approach herein overestimates the equivalent loss factors and
the worse case is observed for the PVB viscoelastic law at 201C where the linear equivalent frequencies and associated loss
factors of the RM approach are more than the twice of those of the ACM and ECM approaches. This needs to pay a particular
attention to the use of the RM approach which is not suitable for any viscoelastic law. In this way, the RM approach must
be improved using the IRM approach as presented in Tables 6 and 7 where the linear equivalent frequencies and associated
loss factors of the IRM approach are near those of ACM and ECM approaches.

Fig. 5 displays the eigenmode deflection obtained by the ECM approach for the 3M ISD112 and the PVB viscoelastic
laws. Although the real and imaginary part have the same mode shape but differ in the amplitude depending on the
viscoelastic law. For instance, the imaginary part of the deflection amplitude for the 3M ISD112 law is larger than the one
of the PVB law. This explains why for the linear equivalent loss factors presented in Tables 6 and 7, the damping induced by
the 3M ISD112 law is greater than the one induced by the PVB law. The imaginary part of the eigenmode which is
commonly disregarded in the RM approach may become larger depending on the viscoelastic law and in such a case needs
to be considered.



Table 6
The first four linear equivalent frequencies and associated loss factors of the clamped–free sandwich beam for frequency dependent core materials

ðo�o0Þ.

RM IRM ACM ECM

Ol (Hz) Zl Ol (Hz) Zl Ol (Hz) Zl Ol (Hz) Zl

3M ISD112 core 27 1C

63.74 2.39�10�1 63.38 1.86�10�1 65.04 1.59�10�1 65.34 1.56�10�1

317.33 4.06�10�1 312.34 3.02�10�1 322.47 2.60�10�1 326.08 2.55�10�1

827.62 4.19�10�1 814.19 3.25�10�1 839.97 2.88�10�1 849.49 2.78�10�1

1540.09 3.52�10�1 1523.79 2.91�10�1 1556.38 2.70�10�1 1567.53 2.69�10�1

3M ISD112 core 20 1C

65.97 7.32�10�1 58.31 3.61�10�1 61.96 2.62�10�1 63.07 1.96�10�1

340.04 3.98�10�1 309.04 2.16�10�1 314.58 1.98�10�1 316.54 1.87�10�1

845.85 2.51�10�1 813.76 1.75�10�1 821.85 1.69�10�1 823.29 1.60�10�1

1562.42 1.26�10�1 1526.99 9.71�10�2 1530.85 9.63�10�2 1530.60 9.48�10�2

PVB core 20 1C

488.78 2.12�10�1 81.78 1.54�10�3 81.80 1.48�10�3 81.79 1.37�10�3

2082.08 1.55�10�1 503.95 6.12�10�3 504.17 5.98�10�3 504.16 5.43�10�3

4183.69 1.29�10�1 1379.56 1.04�10�2 1380.38 1.02�10�2 1380.34 9.38�10�3

6090.64 1.13�10�1 2626.08 1.48�10�2 2627.92 1.46�10�2 2627.87 1.36�10�2

Table 7
The first four linear equivalent frequencies and associated loss factors of the clamped–clamped sandwich beam for frequency dependent core materials

ðo�o0Þ.

RM IRM ACM ECM

Ol (Hz) Zl Ol (Hz) Zl Ol (Hz) Zl Ol (Hz) Zl

3M ISD112 core 27 1C

288.11 2.91�10�1 286.88 2.59�10�1 291.38 2.47�10�1 292.70 2.49�10�1

774.38 3.05�10�1 768.85 2.61�10�1 781.34 2.46�10�1 784.94 2.45�10�1

1485.64 2.79�10�1 1476.96 2.44�10�1 1492.02 2.34�10�1 1502.34 2.34�10�1

2412.39 2.62�10�1 2401.45 2.34�10�1 2428.93 2.26�10�1 2436.94 2.27�10�1

3M ISD112 core 20 1C

289.24 2.28�10�1 285.06 1.88�10�1 287.38 1.83�10�1 288.07 1.80�10�1

781.95 1.77�10�1 769.52 1.42�10�1 773.39 1.39�10�1 774.05 1.36�10�1

1494.62 9.70�10�2 1480.16 8.21�10�2 1482.51 8.17�10�2 1482.42 8.09�10�2

2398.41 4.88�10�2 2385.10 4.31�10�2 2386.03 4.31�10�2 2385.94 4.30�10�2

PVB core 20 1C

1631.84 1.56�10�1 506.46 9.14�10�3 506.79 8.94�10�3 506.77 8.03�10�3

3382.00 1.28�10�1 1357.71 1.38�10�2 1358.75 1.36�10�2 1358.71 1.25�10�2

5280.18 1.11�10�1 2579.46 1.79�10�2 2581.56 1.77�10�2 2581.50 1.65�10�2

7241.05 9.88�10�2 4120.84 2.14�10�2 4124.21 2.12�10�2 4124.14 2.00�10�2
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The linear responses corresponding to the first vibration mode of the simply supported and the clamped–free sandwich
beam using the 3M ISD112 law at 20 1C are presented in Fig. 6 for different eigenmodes approaches. It is seen that the RM
approach underestimates the sandwich beam response compared to the ACM and the ECM approaches. The response is
improved when using the IRM approach. Indeed, the responses obtained by the ACM and the ECM approaches are closer.
The same observations are raised for the corresponding linear phases presented in Fig. 7 where the phase curves obtained
by the RM approach are clearly shifted from those obtained by the ACM and ECM approaches.

For the nonlinear vibrations analysis, the nonlinear modal coefficients associated to the two first vibration modes for
frequency dependent models are presented in Table 8 for different eigenmodes approaches. Results obtained by the ACM
approach are nearly the same compared to those of the ECM approach. As the nonlinear modal coefficients provided by the
RM approach are so far from those of the ACM and ECM approaches especially for the PVB viscoelastic law, there is a need
to improve the RM approach which is the proposed IRM approach.
5.2.2. Analysis around any frequency o
The present analysis is held for frequency dependent models in a general way without any restriction on the frequency

by following the generalized approach presented in Section 4.2. The emphasis is the comparison of the three main
eigenmodes approaches, i.e: the RM, ACM and ECM approaches in the linear and nonlinear framework. The linear and
nonlinear response curves corresponding to the first vibration mode of the simply supported sandwich beam for the 3M
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ISD112 viscoelastic law at 20 1C are presented in Figs. 8(a) and (b), respectively. One can realize that the ACM and ECM
responses are closer but the RM response is completely shifted from the both. Before the resonance zone, the RM response
is upper the ACM and ECM responses but comes down when reaching the resonance zone. The RM approach
underestimates the resonance peak and there is a real need to compute the sandwich beam response accurately using the
whole complex eigenmode which may be performed using the ACM or ECM approach. Figs. 8(c) and (d) display the
corresponding linear and nonlinear phases, respectively. The phase curves performed with the ACM and ECM approaches
are closer except the one performed with the RM approach. As seen above for the responses, The RM phase is undervalued
compared to the ACM and ECM phases. Fig. 9 displays the linear and nonlinear response and phase curves corresponding to
the first vibration mode of the clamped–simple sandwich beam for the 3M ISD112 viscoelastic law at 27 1C. Despite the
change in the viscoelastic law and boundary conditions, one can raise up the same observations as made in Fig. 8. Its comes
out from the present assessment that for frequency dependent models, the RM approach is no more suitable and may lead
to erroneous results of the damping characteristics, phase and harmonic response curves. Complex eigenmodes are needed
to establish an efficient Galerkin’s basis for linear and nonlinear vibrations analysis of viscoelastic sandwich beams. As the
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Table 8
Nonlinear coefficients associated to the first two vibration modes of the sandwich beam for frequency dependent core’s materials ðo�o0Þ.

RM IRM ACM ECM

CR CI CR CI CR CI CR CI

Simply supported

ISD112 27 1C 18.93 3.48�10�5 19.36 4.48�10�5 18.10 4.75�10�5 17.72 4.70�10�5

25.67 9.71�10�5 26.16 1.17�10�4 24.69 1.20�10�4 24.01 1.20�10�4

ISD112 20 1C 18.20 1.84�10�5 20.61 3.15�10�5 19.42 3.30�10�5 19.09 3.56�10�5

25.27 6.65�10�5 26.44 8.80�10�5 25.84 8.90�10�5 25.59 9.22�10�5

PVB 20 1C 0.31 1.86�10�5 8.77 3.58�10�2 8.76 3.70�10�2 8.76 4.09�10�2

8.09 5.46�10�5 9.09 1.25�10�2 9.08 1.28�10�2 9.08 1.41�10�2

Clamped–clamped

ISD112 27 1C 6.68 2.54�10�5 6.69 2.85�10�5 6.46 2.89�10�5 6.41 2.85�10�5

15.94 1.05�10�4 15.88 1.23�10�4 15.28 1.25�10�4 15.12 1.24�10�4

ISD112 20 1C 6.69 1.93�10�5 6.78 2.38�10�5 6.66 2.39�10�5 6.62 2.41�10�5

15.76 5.87�10�5 15.84 7.37�10�5 15.66 7.42�10�5 15.59 7.55�10�5

PVB 20 1C 0.21 1.35�10�5 2.16 2.36�10�3 2.15 2.41�10�3 2.16 2.68�10�3

0.84 6.01�10�5 5.06 3.33�10�3 5.06 3.37�10�3 5.07 3.68�10�3

Clamped–simple

ISD112 27 1C 12.68 3.40�10�5 12.66 4.01�10�5 11.98 4.10�10�5 11.80 4.03�10�5

23.01 1.15�10�4 22.91 1.34�10�4 21.83 1.37�10�4 21.45 1.36�10�4

ISD112 20 1C 12.57 3.22�10�5 13.03 3.20�10�5 12.57 3.25�10�5 12.43 3.31�10�5

22.77 7.20�10�5 22.99 9.08�10�5 22.62 9.15�10�5 22.42 9.38�10�5

PVB 20 1C 0.28 1.78�10�5 4.74 8.27�10�3 4.73 8.48�10�3 4.74 9.47�10�3

0.94 6.54�10�5 7.46 6.65�10�3 7.45 6.75�10�3 7.46 7.42�10�3
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present study reveals the equivalence of the ACM and ECM approaches, the complex eigenmodes of the Galerkin’s basis
may be performed using the ACM approach which is less expensive.
6. Conclusion

A numerical method for linear and nonlinear vibrations analysis of viscoelastic sandwich beams has been developed
based on finite element solutions. This method couples the harmonic balance technique to one mode Galerkin’s procedure.
A general formulation taking into account the complex constant and the frequency dependent viscoelastic models has been
developed.

Four numerical models for eigenmodes computation have been proposed to establish the Galerkin’s basis: real
eigenmodes (RM), improved real eigenmodes (IRM), approached complex eigenmodes (ACM) and exact complex
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eigenmodes (ECM). The analysis has been conducted first in a simple framework and second in a general one for various
viscoelastic laws and boundary conditions. To raise a clear picture on the validity and accuracy of the classical RM
approach, a numerical assessment has been held based on the linear and nonlinear vibrations characteristics and on the
harmonic response and phase curves performed with each eigenmode approach. The obtained results show that for the
constant viscoelastic models:
�
 the RM and IRM approaches are exactly the same,

�
 the ACM and ECM approaches are exactly the same,

�
 the RM approach is well efficient and accurate only for small damping but leads to erroneous results for high damping.

For the frequency dependent models, the obtained results show that:
�
 the ACM approach is equivalent to the ECM approach,

�
 the RM approach leads to erroneous results which may be improved using the IRM approach.
It comes out from the present assessment a misstrust in the use of real eigenmodes as Galerkin’s basis, especially for
frequency dependent models. Therefore, complex eigenmodes are needed to establish an efficient Galerkin’s basis for an
accurate modeling of the linear and nonlinear vibrations of viscoelastic sandwich structures. As the present study reveals
the equivalence between the ACM and ECM approaches, the complex eigenmodes of the Galerkin’s basis may be performed
using the ACM approach which is less expensive. Future work is concerned with complex multimodes approach and
nonlinear vibration modeling of viscoelastic plates and shells.
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Appendix A. Strain, displacement field and constitutive laws

Based on the kinematic model as described in Section 2.1, the strain and displacement fields are presented for the face
layers i=1,3:

Uiðx,z,tÞ ¼ uiðx,tÞ�ðz�ziÞ
qw

qx

Wiðx,z,tÞ ¼wðx,tÞ

eiðx,z,tÞ ¼
qui

qx
þ

1

2

qw

qx

� �2

�ðz�ziÞ
q2w

qx2
(41)

where z1 ¼ ðhf þhcÞ=2¼�z3, ui represents the axial displacement of the middle surface of the ith layer and w the common
transverse displacement. Those related to the viscoelastic layer i=2 are

U2ðx,z,tÞ ¼ uðx,tÞþzbðx,tÞ

W2ðx,z,tÞ ¼wðx,tÞ

e2ðx,z,tÞ ¼
qu

qx
þ

1

2

qw

qx

� �2

þz
qb
qx

x2ðx,z,tÞ ¼ bþ
qw

qx
(42)
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where u and b are, respectively, the axial displacement of the middle surface and the rotation of the normal to the middle
plane of the viscoelastic core. e2 is the normal strain and x2 the shear strain of the viscoelastic core. The displacements
continuity assumptions at the interfaces between the three layers result in the following relations:

u1 ¼ uþ
hc

2
b�

hf

2

qw

qx

� 	

u3 ¼ u�
hc

2
b�

hf

2

qw

qx

� 	
(43)

Based on the generalized Hooke’s stress–strain law, the constitutive behavior of the sandwich beam is expressed through
the axial force Ni and bending moment Mi of each layer i:

Niðx,tÞ ¼ Ef Sf
qui

qx
þ

1

2

qw

qx

� �2
" #

i¼ 1,3

Miðx,tÞ ¼ Ef If
q2w

qx2
(44)

where Ef denotes the Young’s modulus of the face layers, Sf and If represent the area and the quadratic moment of the faces
cross-section, respectively. The axial force and bending moment in the viscoelastic layer i=2 are given in form of
convolution product:

N2ðx,tÞ ¼ ScYðtÞ �
q
qt

qu

qx
þ

1

2

qw

qx

� �2
" #

M2ðx,tÞ ¼ IcYðtÞ �
q
qt

qb
qx

� �
(45)

where Sc and Ic are the area and the quadratic moment of the cross-section of the viscoelastic core, respectively. Y(t)
denotes the relaxation function and nc the Poisson ratio of the viscoelastic core material. The shear force induced in the
viscoelastic layer is

Tðx,tÞ ¼
Sc

2ð1þncÞ
YðtÞ �

q
qt

qw

qx
þb

� �
(46)

Appendix B. Element matrices and shape functions

Denoting by Le the element length and setting x¼ 2x=Le�1, for x 2 ½0 Le� and x 2 ½�1 1�, the classical polynomial shape
functions used in Section 3.1 are defined in [20] as

n1ðxÞ ¼
ð1�xÞ2ð2þxÞ

4

n2ðxÞ ¼
Leð1�xÞ2ð1þxÞ

8

n3ðxÞ ¼
ð1þxÞ2ð2�xÞ

4

n4ðxÞ ¼�
Leð1þxÞ2ð1�xÞ

8

n5ðxÞ ¼
1�x

2

n6ðxÞ ¼
1þx

2
(47)

The element mass and stiffness matrices used in Section 3.1 are expressed as:

½Me� ¼ ð2rf Sf þrcScÞ½m
e�

½Ke� ¼ 1
2 fð2IcEcðoÞþEf Sf h2

c Þ½k
e
1��Ef Sf hf hc½k

e
2�gþ

1
2fEf ð4If þSf h2

f Þ½k
e
3�þ2ScGcðoÞ½ke

4�g (48)

½me� ¼

Z 1

�1
JT ½Nw�½Nw�dx
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½ke
1� ¼

Z 1

�1
J�1T

½Nub�½Nub�dx

½ke
2� ¼

Z 1

�1
J�2ð

T
½Nub�½N

00
w� þ

T
½N00w�½Nub�Þdx

½ke
3� ¼

Z 1

�1
J�3T

½N00w�½N
00

w�dx

½ke
4� ¼

Z 1

�1
ðJ�1T

½Nuw�½Nuw�þ
T
½Nb�½Nuw� þ

T
½Nuw�½Nb� þ JT ½Nb�½Nb�Þdx (49)

where J=Le/2 and the notations ½Xu�, ½X00� stand for the first and the second derivatives of the matrix ½XðxÞ� with respect to x.

Appendix C. Reduced equations for axially immovable ends

Integrating Eq. (23) for immovable ends u(0)=u(L)=0, one gets

u0ðxÞ ¼
x

L

Z L

0
jW uðsÞj2 ds�

Z x

0
jW uðsÞj2 ds

u2oðxÞ ¼
x

2L

Z L

0
ðW uðsÞÞ2 ds�

Z x

0

1

2
ðW uðsÞÞ2 ds (50)

Using Eq. (50) in Eq. (22) the amplitudes of the axial force are given by

N0ðxÞ ¼
2Ef Sf þScEcð0Þ

L

Z L

0
jW uðsÞj2 ds

N2oðxÞ ¼
2Ef Sf þScEcð2oÞ

2L

Z L

0
ðW uðsÞÞ2 ds (51)

Thus, the nonlinear modal stiffness appearing in Eq. (25) is

knl ¼
2Ef Sf þScEcð0Þ

L

Z L

0
jW uðxÞj2 dx

� �2

þ
2Ef Sf þScEcð2oÞ

2L

Z L

0
ðW uðxÞÞ2 dx











2

(52)

It is not difficult to compute knl since the deflection W(x) is discretized using the finite element model proposed in
Section 3.1, see Eq. (9a). Denoting by [k5] the matrix obtained when assembling the element matrix
½ke

5� ¼
R 1
�1 J�1T

½Nuw�½Nuw�dx, the integrations related to knl are given byZ L

0
jW uðxÞj2 dx¼

T
fUg½k5�fUg

Z L

0
ðW uðxÞÞ2 dx¼ T

fUg½k5�fUg (53)

where the matrix ½Nuw� represents the derivative of the matrix [Nw] with respect to x.
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